Unraveling the Mystery of the RELATIVE PLACEMENT SCORING SYSTEM

Of the myriad of issues involved in dancing, many are approached subjectively and can be debated endlessly. One issue that is quite often misunderstood, is actually objectively defined - the Relative Placement Scoring System (RPSS). This is an attempt to dissect the concepts of the Relative Placement Scoring System and de-mystify this process, so that, through education, dancers can understand this scoring system and its application and value to dance competitions. While not necessarily easy to understand, it can be broken down, hopefully, clearly and concisely. This comprehensive explanation is lengthy; but does address all the scenarios that can arise.

Before discussing the RPSS, it is important to understand other scoring concepts previously used and their pitfalls. First of all, it is important to note that all of this discussion is based on the assumption that the contest has the judges assigning each couple a numerical "raw score" of the performances, with ' 10.0 ' being the highest possible score.

Some History:

The most common system previously used was simply to convert the judge's raw scores into an average score (total the judge's raw scores and divide by the number of judges); and then rank the average scores from highest to lowest to determine the winners. The inherent problem with this system was the inequality of a given judge's score relative to other judges, and its effect on the final outcome. A judge whose highest score is ' 9.9 ' is going to have their first place couple be more heavily weighted over the other judges' first place couples if the other judges' highest scores were, say, '9.1' to '9.3'. Also, if a judge has used a relatively small range of scores, the smaller incremental differences between scores will not impact the average as much as a judge whose scores have a large margin between scores. For instance, if a judge has (3) scores that are ' 8.8 ', 9.2 ', ' 9.0 ', the larger gap in values will affect the final average more than a judge who assigned those same three couples '9.10', '9.18', '9.15'. Finally, a judge could overly bias the results if their top three scores were, ' 9.9 ', ' 9.2 ', ' 9.1 ' and the next judge's top three scores were ' 9.3 ', ' 9.2 ', ' 9.0 ', as their very high ' 9.9 ' makes their $1^{\text {st }}$ place 'higher' than the other judges' $1^{\text {st }}$ place. Of course, the results could also be biased towards an overly low score and anywhere in the middle. Since judges cannot valuate the performances equally, with a similar range of scores, the mathematics of the average score system was problematic.

Averaging 'weighted' (ranked scores) was equally problematic, as any one judge's out-of-line score (i.e. giving an otherwise highly scored couple a very low score) would still skew the results. Running any number of raw and average scores exercises quickly proves these points and I won't elaborate further.

Other attempts at eliminating bias included removing high and low scores (trying to work with 'the middle ground'), or randomly eliminating one judge's scores in each contest (thus, if there was bias or unsound scores, there was a potential for such scores to not even be used). Without lengthy elaboration, these methods still did not solve all of the potential problems. And, since the more judges and scores that are used, the more credible results that will result; it is somewhat ludicrous to hire judges and then not utilize all of that knowledge and effort.

Relative Placement Concepts:

The first concept utilized in the Relative Placement Scoring System (RPSS) is the idea of EQUALITY. Judges' raw scores are converted to a ranking (each couple's placement relative to the number of contestants). The judge's highest score is ' 1 ', their next highest score is ' 2 ' and so on. Each judge's highest score is ' 1 ', whether that highest score is a ' 9.8 ' or ' 8.8 '; and each judge's first place couple is equal to any other judge's first place couple. Also, the conversion of the raw scores to the ranking (ordinal) creates an "equal" spacing from $1^{\text {st }}$ to $2^{\text {nd }}$ to $3^{\text {rd }}$ (versus a raw score of '9.5', ‘9.2', ‘9.1). In other words, 'close only counts in horseshoes' and $2^{\text {nd }}$ is $2^{\text {nd }}$ whether by "a lot" or "just a little" (just as you win a race whether by $1 / 20$ of a second or 3 seconds or you win a ball game by 1 point or 9 points, etc). Of course, there is a $1^{\text {st }}$ in this contest, whether or not it would not be $1^{\text {st }}$ with another set of contestants or wasn't the same as that couple's previous $1^{\text {st }}$ place performance.

The second concept utilized in Relative Placement scoring is the concept of UNIQUENESS. Each couple is assigned a single score, unique to them. A judge cannot assign the same score to multiple couples; there are no ties. Each judge must have a $1^{\text {st }}$ place, a $2^{\text {nd }}$ place and so on. This process of 'splitting hairs' to absolutely place 'equal' couples one over another is what often makes a judge's job almost impossible!

The third concept, quite important, and most commonly misunderstood, is the concept of MAJORITY. Decisions are made once the majority of judges agree on a couple's placement. Like most voting situations, once $50+\%$ of the judges agree, a decision is derived. Once a decision is made (a couple is placed), the process continues. Since an even number divides to exactly 50%, the concept of majority (50% +) works best with an odd number of judges. Seven judges is the most common number of judges (i.e. it requires four to reach a majority); nine is preferable (but usually limited by events' financial concerns); five is allowable (but since three is a majority, more ties occur more often). Naturally, the higher the number of judges, the more it takes to reach a majority, and thus, the more credible results; and the less impact (good or bad) any individual judge has on the final outcome.

From here, it is much easier to explain this concept, and the methods of handling ties, by looking at an actual example and the steps / thought processes that are involved, whether scoring by hand, or by the computer. So, let's dig in!

A Sample Contest:

Figure 1 shows a hypothetical contest of 12 couples, with 7 judges and a Chief Judge, containing the raw scores. The $1^{\text {st }}$ step in the Relative Placement Scoring process is to verify that each judge did not have any tied scores. Figure 2 shows the $2^{\text {nd }}$ step in the RPSS, converting each judge's score to its ranking (ordinal). All other functions of the RPSS utilize only the scores' ordinals.

Figure 3 illustrates the $3^{\text {rd }}$ step in the RPSS: counting how many $1^{\text {st, }}$ s each couple had, then how many $1^{\text {st }}-2^{\text {nd }}$, s each couple had, how many $1^{\text {st }}-3^{\text {rd }}$, s, etc.

Figure 4 reflects the concept of majority. Until a majority is reached, it doesn't matter what the tally of placements is; nothing is decided until a majority is reached. Remember that in this example, 7 judges required 4 for a majority; therefore, any tabulation of 3 or less "doesn't come into play at that point".

Figure 5 carries the majority concept to its final result: once a majority is reached, a couple's placement is determined, and they are out of the equation while the balance of the couples are placed. Also, if more than one couple reach a majority at any given point, each of those couples' placements must be determined and assigned, prior to going on to the next level of tallies. From here, we can analyze how final placements are determined and discuss how ties are broken.

Looking at Figure 5, we see that no couple had a majority (4) of the judges think they were $1^{\text {st, }}$; therefore, no couple's placement is determined, yet. Moving on the $1^{\text {st }}-2^{\text {nd }}$, s column of Figure 5, we find two couples had four 4 or more judges finding them to be $1^{\text {st }}$ or $2^{\text {nd }}$. The fourth couple (Order of Dance), Jack \& Annie, has five (5) $1^{\text {st }}-2^{\text {nd }}$, s, and the couple that danced ninth, Ricky \& Lucy, has four (4) $1^{\text {st }}-2^{\text {nd }}$'s. Thus, Jack \& Annie receive $1^{\text {st }}$ Place in this contest; Ricky \& Lucy receive $2^{\text {nd }}$ Place. These couples are now placed and are no longer a consideration (this is designated in Figure 5 by the dashes in the remaining cells in their row following their majority tally number). Naturally, if a couple were to have six (6) or even all seven (7) of the judges scores within this ranking, that couple would place before any couples receiving five (5) or four (4) scores within this ranking.

Continuing on (in Figure 5), four (4) $1^{\text {st }}-3^{\text {rd }}$, were received by the seventh couple, Fred \& Ginger. They've received their majority and are awarded $3^{\text {rd }}$ Place. No couple had a majority (4) of $1^{\text {st }}-4^{\text {th }}$, s and when we look at the $1^{\text {st }}-5^{\text {th }}$, , we see the twelfth couple, Ward \& June, have four (4) and become the $4^{\text {th }}$ Place couple.

Ties:

Whoa: looking at $1^{\text {st }}-6^{\text {th }}$,s, we see that three (3) couples are tied at four (4) apiece! So, let's discuss ties. Ties are broken by analyzing the QUALITY (for lack of better term) of those scores that produce the tie. Let's start in easy terms: if two
couples were tied with four (4) $1^{\text {st }}-2^{\text {nd }}$, s, the couple that had three (3) $1^{\text {st }} s$ and one (1) $2^{\text {nd }}$ received 'better" scores than the couple that had only two (2) $1^{\text {st }} s$ and two (2) $2^{\text {nd }}$, s. This can be defined mathematically by adding those ordinals (rankings): $(1+1+1+2=5)$ versus $(1+1+2+2=6)$. Since the lower the ranking ordinal is a higher (better) score (1 is lower than $2,1^{\text {st }}$ is better than $2^{\text {nd }}$), then the lower sum of the ordinals comprising the tie is the higher (better) placement (in this case, the lower sum of 5 is better than 6). Remember, this process is only the sum of the ordinals that form the tying majority. The other judges' scores for the couples who are tied do not come into the equation.

In returning to our hypothetical contest, in Figure 5, the third, fifth and tenth couples each had four (4) $1^{\text {st }}-6^{\text {th }}$, s. We return to Figure 2 and sum the four (ordinal) scores for each couple that are $6^{\text {th }}$ or better. The sums at this tie-breaking stage (Figure 6) are: Third couple: $(4+6+3+5=18)$; Fifth couple: $(6+6+4+2=$ $18)$; Tenth couple: $(5+6+4+6=21)$. Of this three-way tie, the third and fifth couple have lower sums, and therefore will place better, than the tenth couple. However, the third and fifth couples are still tied at this point, so we go to the second round of tie-breaking.

When couples are still tied after summing the ordinals of the tying majority, we look at the next placement level. In our example, since the third and fifth couple each have four (4) $1^{\text {st }}-6^{\text {th }}$,s (and the sum of those ordinals is 18 for both), we move on (back to Figure 3) and analyze the $1^{\text {st }}-7^{\text {th }}$, s for these two tying couples. The third couple has two (2) $7^{\text {th }}$'s (for a total of six (6) $1^{\text {st }}-7^{\text {th' }}$ s) and the fifth couple only has one (1) $7^{\text {th }}$ (for a total of five (5) $1^{\text {st }}-7^{\text {th }}$, s). Therefore, the tie is broken and the third couple places before the fifth couple. Now we can return to Figure 5 and, at the $1^{\text {st }}-6^{\text {th }}$,s column, proceed to determine the final placement of the three (3) couples tied at that point: the third couple, George \& Gracie, receive this contest's $5^{\text {th }}$ Place (their four $1^{\text {st }}-6^{\text {th }}$'s sum to 18 , they have six $1^{\text {st }}-7^{\text {th }} \mathrm{s}$); the fifth couple, Rhett \& Scarlett, are $6^{\text {th }}$ Place (their four $1^{\text {st }}-6^{\text {th }}$, s sum to 18 , they have only five $1^{\text {st }}-7^{\text {th, }}$ s); and the tenth couple, Ken \& Barbie, are the next couple, $7^{\text {th }}$ Place (the four $1^{\text {st }}-6^{\text {th }}$, s summed to 21).

Had the two couples each had the same amount of $1^{\text {st }}-7^{\text {th }}$, s, we would've looked at their number of $8^{\text {th }}$'s; if still tied (or if both couples had no $8^{\text {th }}$, s), the number of $9^{\text {th }}$, , etc. If two couples tied all the way out to the end, then the tie is broken by evaluating the scores of only those two couples, comparing them only between each other, to see which couple placed higher over the other couple by a majority of the judges.

The following example (outside of the hypothetical contest) illustrates this concept:

Couple 'A' Scores: $\frac{\mathrm{J} 1}{1}-\frac{\mathrm{J} 2}{2}-\frac{\mathrm{J} 3}{1}-\frac{\mathrm{J} 4}{2}-\frac{\mathrm{J} 5}{3}-\frac{\mathrm{J} 6}{2} \frac{\mathrm{~J} 7}{\mathbf{1}}$
Couple 'B' Scores: 2-1-3-1-2-1-2
The couples are completely tied, as each has three (3) $1^{\text {st }}$, three (3) $2^{\text {nd }}$, and one (1) $3^{\text {rd }}$ place scores (note that Judge \#3 gave another couple $2^{\text {nd }}$ Place and Judge \#5 awarded $1^{\text {st }}$ to neither of these couples). Couple ' A ' was placed higher than Couple 'B' by three (3) judges (Judges \#1, \#3 \& \#7)(in bold). Couple ' B ' received higher scores than Couple 'A' by four (4) judges
(Judges \#2, \#4, \#5 \& \#6)(in bold). Therefore, between these two couples, Couple ' B ' places higher than Couple ' A ' in the final results, as a majority of the judges scored Couple ' B ' over Couple 'A'.

With this technique, the judging panel still resolves all ties; and a Chief Judge's score is only used in the rare situation of replacing another's judge's set of scores, should that judge have gotten so confused so as to have incomplete or unusable scores, or that judge was unavailable to correct a missing or duplicate score, or the judge became ill and left the contest, etc. Sometimes Chief Judge's scores are used as one of 5, 7, or 9 judging slots (particularly at smaller events). However, Chief Judges prefer to rely on their judging panel, as they may be distracted with other contest / event issues, or may be involved with, or watching for, contest irregularities, etc. that may prevent them having their full attention on each performance at hand.

Please remember that had the sum of George \& Gracie and Rhett \& Scarlett's $1^{\text {st }}-6{ }^{\text {th }}$ places not tied at 18 each, the fact that George \& Gracie had two (2) 7th's and Rhett \& Scarlett had only one (1) $7^{\text {th }}$, would not have been a factor. Also note that should a double two-way tie, say two couples have a majority of five (5) and two couples have a majority of four (4) at a given point, the two couples who have the five (5) would have their tie broken and they would each place prior to breaking the tie of the two couples with the majority of four (4).

Returning to Figure 5, to complete our hypothetical contest: at the $1^{\text {st }}-7^{\text {th }}$,s column, the second couple, Marc \& Cleo, have a majority and become the $8^{\text {th }}$ Place couple. The eighth couple, Barney \& Betty, have six $1^{\text {st }}-9^{\text {th }}$,s and are $9^{\text {th }}$ Place. The first and sixth couples tie at four $1^{\text {st }}-10^{\text {th }}$,s each. Per Figure 5, the sixth couple's sum of their $1^{\text {st }}-10^{\text {th }}$'s is $27(3+10+4+10=27)$ and Rocky \& Adrian become $10^{\text {th }}$ Place; over the first couple, Romie \& Julie, whose sum of $1^{\text {st }}-10^{\text {th }}$'s is $30(5+6+9+10=$ 30), and they therefore become $11^{\text {th }}$ Place. Finally, the eleventh couple, Ike \& Mamie, has a consensus of the judges assigning them $1^{\text {st }}-11^{\text {th }}$, s and they are last, $12^{\text {th }}$ Place.

Figure 7 shows the final results, listed in order of placement. This is the typical results sheet that you would see at an event. We will now discuss some additional issues and questions that typically arise when discussing RPSS.

Common Questions:

This hypothetical contest illustrates a relatively common occurrence: the second place couple, Ricky \& Lucy, have three (3) $1^{\text {st }}$, , more than anyone else; and yet, they placed second, behind a couple with only two (2) $1^{\text {st }}$ s. Remember, RPSS does not give the couple with 'the most' $1^{\text {st }}$ s first place, but first place honors are received by whichever couple 'first' gets a majority of judges scoring them higher than anyone else; and $1^{\text {st }}$ Place is not necessarily decided at the 'counting $1^{\text {st }}$'s' stage, and $2^{\text {nd }}$ Place is not necessarily decided after counting $1^{\text {st }}-2^{\text {nd }}$, , etc. In this case, Ricky \& Lucy did have three (3) $1^{\text {st }}$, , but the majority (4) judges didn't have them in first! Since they did not (nor anyone else) receive a majority of $1^{\text {st }} \mathrm{s}$, the RPSS continued on to counting the number of $1^{\text {st }}$ -
$2^{\text {nd }}$ s. In doing so, Jack \& Annie's five (5) $1^{\text {st }}-2^{\text {nd }}$,s placed them higher than Ricky \& Lucy's four (4) $1^{\text {st }}-2^{\text {nd }}$, .

Since this concept is so misunderstood, let's drill this point home with another extreme example (outside of the hypothetical contest): a Couple ' A ' with the scores of 2-2-2-2-12-12-12 (i.e. no $1^{\text {st, }}$ s at all) would receive $1^{\text {st }}$ Place over a Couple 'B' with scores of 1-1-1-3-3-3-3. Neither couple has a majority (4) of $1^{\text {st }} s$, and when counting $1^{\text {st }}-2^{\text {nd }}$, s, Couple ' A ' has four (4), while Couple ' B ' still only has three (3). Couple ' B ' doesn't receive a majority until counting $1^{\text {st }}-33^{\text {rd }}$, (of course, at that point, it's a grand slam majority with all seven (7) judges!). Couple ' A ' has a majority of judges scoring them $2^{\text {nd }}$ or better, and they place over Couple ' B ' which only has a majority of judges scoring them $3^{\text {rd }}$ or better. Well, you ask, what about Couple 'A's three (minority) last place scores? They are simply "outvoted" by a majority of the judges and the $50+\%$ vote carries the decision.

Here's one final, extreme illustration of why this concept works over any type of totaling or averaging of all the judges’ scores. Even in a Weighted Scores system (where, the lower sum or average is best, since $1\left(1^{\text {st }}\right)$, a lower number, is better than $2\left(2^{\text {nd }}\right)$, etc), an out-of-line score can create an incorrect result. Clearly, a couple with six (6) $1^{\text {st }}$ s out of seven (7) judges deserves to be first. Yet, if a Couple ' A ' had scores of 1-1-1-1-1-1-12 (sum of 18; 2.57 ave.), they would be second behind a Couple 'B' with scores of 2-3-2-2-2-5-1 (sum of 17; 2.42 ave.). That seventh judge whose out-of-line score of $12^{\text {th }}$ for Couple ' A ' actually pushed them into $2^{\text {nd }}$ Place, even with six $1^{\text {st }}$ Place scores! This does not happen in the RPSS.

This hypothetical contest and the illustration in the previous paragraph make good examples to discuss a second common misconception: that the other (minority) judges' scores are not used. It is not that these other judges' scores aren't used (they are used to determine if a majority is reached), it is that the minority scores "don't matter" once the majority is reached. Looking at Figure 6, the $1^{\text {st }}$ Place Couple, who had five (5) $1^{\text {st }}-$ $2^{\text {nd }}$, , also had a $3^{\text {rd }}$ and a $5^{\text {th }}$. They still would've had $1^{\text {st }}$ place (and five (5) $1^{\text {st }}-2^{\text {nd }}$'s) even if their other two scores had both been dead last! So, "had" the judge who gave them $5^{\text {th }}$, been biased or simply been "way out of line with the other judges" and given then a $12^{\text {th }}$, it wouldn't have affected the outcome. This is the overriding beauty of the RPSS.

To make the point that all judges do matter, you only need to look at the $2^{\text {nd }}$ Place Couple, who had three (3) $1^{\text {st }}$ s. Had one of the other judges also given them a $1^{\text {st }}$, they would've won $1^{\text {st }}$ Place, as they then would've had a majority (4) of $1^{\text {st }}$ s. Actually, had this couple received even another $2^{\text {nd }}$, they also would've won the contest with five (5) $1^{\text {st }}-2^{\text {nd }}$, s (with a sum of 7), over Jack \& Annie, whose five (5) $1^{\text {st }}-2^{\text {nd }}$, s summed to 8 ! To reiterate: all judges' scores are used, they do count, they are important; but, once a majority is reached, the minority judges' scores do not affect the final outcome of that couple. So, having a panel of knowledgeable, credible judges is important, but a score that is out of line, will be less likely to significantly or negatively affect the final results with the RPSS. Our sample contest also illustrates how the Chief

Judge's scores do not enter into the majority calculations, as the CJ gave Ricky \& Lucy a $1^{\text {st }}$, yet they received $2^{\text {nd }}$ Place.

Evaluating Results:

Let me share a couple of other comments about analyzing results in the RPSS and analyzing judges' scores. In a perfect world, all judges would identify and valuate all elements of dance the same and produce equal scores, with unquestionable results. Obviously, this is not possible, and the goal is to have as consistent scores as possible from a credible panel of judges. Generally, judges hope to have each of their scores within a couple placements of the final outcome. Good judges will generally score within an acceptable range of the final results, most of the time. Mistakes or misjudgments can be made, and I often joke that, "In any given contest, one judge will be 'off', and each judge will be 'off' at least once during a given competition event!"

While the hypothetical contest I developed for this example had scores "all over the place," it actually happens relatively frequently. Perhaps all couples were relatively equal (good and bad elements) and no one "clearly stood out", so judges' scores really are a function of how they weighed all of the elements. A judge may have missed some crucial moments of a performance while making notes; or may have really focused on (and rewarded or penalized) a particular element or aspect of a performance that the other judges valued differently. It doesn't mean that judge isn't credible or knowledgeable, but they may have scores that aren't in line with the majority of the judges. (For more comments on understanding judges, I invite you to read my article, "Judging: The Impossible Job!'", originally published in the July/August 2002 issue of 5678 Swing magazine.)

Contests with couples judged one at a time (when each judge can focus on each couple) will generally have more consistent scores than when judging multiple couples on the floor (and trying to give separate, distinct, raw scores to each couple!). With multiple couples in a heat, a judge might have seen / been focused on a "good" couple during their worst 10 seconds and on a "poorer" couple's best 10 seconds. If so, their scores will be quite different than some or all of the other judges. Performances that contain any silly or comedic elements are quite often judged at opposite ends of the spectrum ("...they really connected, that took talent..." or "...they just goofed around, they really weren't dancing...").

Finally, remember that the judges are making the hard decisions and "splitting hairs" in assigning, and being able to stand by, their first five or six placements - as those most obviously affect the winners, prizes and prestige of the final results. Therefore, as a contestant, don't over-analyze that a judge gave you 9th, and gave an 8th to a couple you thought did more poorly than you. One Chief Judge wisely advised contestants to look at their general placement (top, middle or bottom third), versus 7th vs. 8th, or 12th vs. 13th! The bottom line is still the same as it's always been: have fun, and don't necessarily compare yourself to other competitors, but concentrate on your own dancing and learn from your own performances!

Callback Scoring:

I'd like to have a brief discussion of the Callback Scoring system. While not part of the RPSS, it is the most commonly used system for scoring preliminary and semi-final rounds, whether as a couple or an individual. Callback Scoring (also known as "Yes/No/Maybe" or "Go/No Go") doesn't require the judges to assign specific and individual scores to the contestants, nor to necessarily rank one over another. Instead, it simply asks the judges, "Is this contestant one of the top 'xx number' who should progress to the next round?"

The large heats generally utilized in Callback Scoring rounds allow the judges to see all or almost all of the contestants at one time, directly and peripherally. Evaluations are made, whether utilizing raw scores, pluses and minuses, or notes, and then the judge gives a 'yes' to the top 'xx number'. Generally, the judges will be asked to bring back (provide 'yes' votes) a number equal to or slightly more than the number anticipated to progress to the next round and have a couple of alternates. The balance of the contestants would obviously receive 'no' scores. The scores are tallied and ranked and the cutoff is determined.

A typical contest calling back to the finals might be consist of 25 contestants, with the judges asked to provide 10 'yes' votes and 2 'alternate (maybe)' votes. As a contestant analyzing the scores in that contest, a 'yes' from any given judge means they felt you were in the top 10 (regardless of whether you were their 1st choice or you got their last 'yes' spot!). If you received all 'no' votes, it doesn't mean you were in last place, it simply means that none of the judges felt you were in the top 12 (a 'yes' or 'alternate'). You could've been each judge's 13th choice for all you know! All 'no' votes also does not mean that you are a not a good dancer nor that you aren't worthy to compete in that division; just that no judges found you to be in the top ' $x x$ ' of that contest.

In closing, the results of any contest are a reflection of the majority of this panel of judges, scoring this grouping of contestants, with these specific performances, at this particular time. A different or additional judge, a different or additional couple, any given couple's different performance (with or without a mistake, or with or without a highlight), and the results would be different. Mathematically, the RPSS produces the fairest results and most effectively reduces the possibility of an individual judge from overly affecting the results.

Jim Tigges

Phoenix, AZ

[^0]
HYPOTHETICAL DANCE CONTEST

Number of Couples: 12 Number of Judges: 72 Majority: 4

Figure 1: Raw scores or 12 Couples by Jugages.
Figure 2:convering rawsocors
to their Ranking Ordinal.

Figure 3: Tallying the quantity of placements at each level.

Figure 4:" Displaying the tally only when

Figure 5:
Displaying the tally only at the point that a placement is determined; and indicating that the couple has been ranked.

Figure 6. The first level of tie-breaking
(the sum of the ordinals).

FINAL RESULTS (Order of Placement)

Number of Couples: 12
Number of Judges:
Majority: 4

Figure 7: Final results, listed in the Order of Placement.

RELATIVE PLACEMENT SCORING SYSTEM Alternate Scores / Scoring Methods Explanations

Our first study of Alternate Scores is to simply compare the results of our hypothetical contest with seven (7) judges to results of that same contest with only five (5) judges. The Figures $8 \mathrm{~A}-8 \mathrm{C}$ illustrate three (3) different results if various combinations of two (2) judges were eliminated from this hypothetical contest. We often joke about "who's right and who's wrong", but these examples clearly illustrate the effect if two judges weren't part of this contest.

Figure 8A:

The results of this contest based on five judges (without Judges \#4 \& \#5) is shown in Figure 8A. When comparing these results (the right-hand-most-column) against the results from the seven judge scenario (as per the left-hand-most- column); the $1^{\text {st }}$ and $2^{\text {nd }}$ Place couples have switched and the $4^{\text {th }}-6^{\text {th }}$ Place couples have switched order, as have the $10^{\text {th }} \& 11^{\text {th }}$ Place couples.

The primary example shown in this scenario is that if the two judges who had given Jack \& Annie $1^{\text {st }}$ Place honors were not part of the judging panel, Jack \& Annie do not have a majority (3 of 5) until tallying $1^{\text {st }}-2^{\text {nd }}$,s, whereas the three $1^{\text {st }}$ Placements received by Ricky \& Lucy give them their majority when tallying $1^{\text {st, }}$ s. Therefore, Ricky \& Lucy would place $1^{\text {st }}$ over Jack \& Annie.

Figure 8B:

If the judging panel for this hypothetical contest consisted of five (5) judges (without Judges \#2 \& \#3), Jack \& Annie still receive $1^{\text {st }}$ Place by having all five (5) judges rank them $1^{\text {st }}$ or $2^{\text {nd }}$ (Judges \#2 \& \#3 had given them their lowest scores $-3^{\text {rd }}$ and $\left.5^{\text {th }}\right)$. Thus, it appears they were undoubtedly $1^{\text {st }}$ Place, as they had no scores lower than $2^{\text {nd }}$ Place.

Ricky \& Lucy still receive $2^{\text {nd }}$ Place (as they did with seven judges), but they don't receive that placement until tallying $1^{\text {st }}-$ $3^{\text {rd }}$ Placements; not at the tallying $1^{\text {st }}-2^{\text {nd }}$ Placements level, as with the seven judge scenario.
Also, the $4^{\text {th }} \& 5^{\text {th }}$ Place couples (per the right-hand-mostcolumn) have switched order (from the seven judge scenario the left-hand-most-column). With George \& Gracie's two $7^{\text {th }}$ place scores removed (Judges \#2 \& \#3), they receive $4^{\text {th }}$ Place in this example. Their three $1^{\text {st }}-5^{\text {th }}$ Placements' ordinals sum to 12 , over Ward and June's three (3) $1^{\text {st }}-5^{\text {th }}$ Placements, whose ordinals sum to 14 .

Figure 8C:

If Judges \#6 \& \#7 had not been part of this judging panel, the new scenario of five judges results (right-hand-most-column) in changes in almost every placement from the results of the seven-judge-RPSS (left-hand-most-column). However, other than Ward \& June, whose placement changed by three places (from $4^{\text {th }}$ to $7^{\text {th }}$ Place), no one else changed more than 2 places.

This scenario most clearly illustrates that a different or larger / smaller panel of judges will create different results. However, it is generally unlikely that any given couple would change more than two or so places in whatever judging panel configuration or size was assembled. This is one of the overriding advantages of the RPSSS. If a contestant who came in $5^{\text {th }}$ in a contest feels they were unfairly judged by a judge, the contestant can rest assured they still wouldn't have placed $1^{\text {st }}$ or $2^{\text {nd }}$, even if that judge was not on that panel!

Figure 9:

If this contest was scored on an Averaged Raw Score basis, the seven judges' raw scores for each couple would be summed and divided by the number of judges to derive an Average Score. The results, in the right-hand-most-column, have three couples changing final placements from the seven-judges-RPSS results (left-hand-most- column).

Due to having seven judges in this hypothetical contest, the Averaged Raw Score scenario doesn't produce a dramatic change in results from the RPSS. However, with only five judges, the impact of any given judge's scores is much more apparent. In particular, if that judge's scores are somewhat out of line with the others, or if they used a very tight or very broad range of scores, or if their highest raw scores were much lower than the other judges' highest raw scores, etc., the results are quite different. Do to space limitations, I am not showing the following calculations, but: averaging the raw scores of the five judges used in Fig. 8A's scenario results in seven couples receiving different placements than in the seven-judge-RPSS results, including four of the top five! Averaging the raw scores for the five judges used in Fig. 8C's scenario also result in seven placements changing from the seven-judge-RPSS results! Two placements change when averaging the raw scores of the five judges used in Fig. 8B's scenario.

Figure 10:

In a Weighted Scores method, each couple's ranking ordinals from the seven judges are summed and then divided by the quantity of judges. The result (right-hand-most-column) is five couples changing placements from the seven-judge-RPSS results (left-hand-most-column). The most dramatic change is Ward and June, whose $10^{\text {th }}$ Place from Judge $\# 2$ drops them to $6^{\text {th }}$ Place, versus their $4^{\text {th }}$ Place result in the RPSS.

Again, having seven judges mathematically lowers the impact of any given judge. When looking at the five-judge scenarios (also not shown due to space limitations), the results of the Fig. 8A scenario have four couples receiving different places (versus the RPSS); Fig. $8 B$'s results have seven couples changing placements; and the Fig. $8 C$ scenario produces a different final placement for eight of the twelve couples!

ALTERNATE SCORES / SCORING METHODS

5 Judge Results (Without Judges \#4 \& \#5)

Order of Placement
Couples: 12 Judges: 5 Majority: 3

Figure 8A: Final results, listed in the Order of Placement, if oNLY 5 Judges (Without $\# 4 \& \# 5$)

5 Judge Results (Without Judges \#2 \& \#3)

Figure 8B: Final results, listed in the Order of Placement, if oNLY 5 Judges (Without $\# 2 \& \# 3$)

5 Judge Results (Without Judges \#6 \& \#7)

Figure 8C: Final results, isted in the Order of Placement, if oNLY 5 Judges (Without \#6 \& \#7)

Alt. Method: Averaged Raw Score

Figure 9: Results based on an Average of all judges' Raw Scores (highest average raw score is best).

Alt. Method: Averaged Ordinals (Weighted Score)

Figure 10: Results based on an Average of all judges' scores converted to Ordinals (lowest average ordinal is best).

[^0]: (About the Author: Jim and his wife, Cathy, are members of the Phoenix swing dance community and are former competitors and four-time event directors for the GPSDC July $4^{\text {th }}$ Convention. In addition to serving on the World Swing Dance Council Executive Board), Jim serves as a Judge and Chief Judge at various events and provides computer scoring services. He can be reached at jim@jimtigges.com).

